Noise Power Ratio & Sensitivity Tests on FunCube Dongle Pro+

by Adam Farson VA70J/AB40J. 4-5 November 2013.

The following tests were performed on an FCDP+, running under HDSDR v2.7 on Win7 Pro, 64-bit. HDSDR was selected, as its spectrum scope is scalable.

- Noise Power Ratio (NPR): Test setup: Wandel & Goltermann RS-50 white noise generator, fitted with filters as per Table 1. The RS-50 was connected to the FCDP+ input via a 75/50Ω matching transformer. The noise loading was increased until NPR (the difference in dB between the top and bottom of the notch) reached a peak value, then read off the RS-50's attenuator scale.
 - Reference: <u>http://www.ab4oj.com/test/docs/npr_test.pdf</u>

The noise loading in a given bandpass width is equivalent to the stated number of contiguous SSB channels; thus, the NPR test simulates a band packed with very strong signals. Table 1: FCDP+ NPR

Bandstop kHz	Bandpass kHz	Equiv. J3E channels	Noise loading PTOT dBm	NPR dB	Per-channel loading
1940	60-2048	480	-39	40	S9+7dB
3886	60-4100	960	-28	39	S9+7dB
5340	60-5600	1260	-25	43	S9+17dB
7600	316-8160	1800	-24	42	S9+17dB

Figure 1: FCDP+ NPR notch spectrum at 5340 kHz.

By comparison, the Perseus has 75 dB NPR at higher noise loading levels, i.e. higher signal strength per equivalent channel. The conclusion is that the FCD Pro+ is no great shakes as an HF receiver – but then, HF is not its primary mission.

- Reference: <u>http://www.ab4oj.com/sdr/perseus/perseus_notes.pdf</u> pp. 12-15
- 2. Noise Power Ratio (NPR) re-test with SDR#: Test setup as per 1. Above. This test was run under SDR# ver. 1.0.0.1000, with LNA off/on, Mixer Gain on and IF gain = 0 dB.

Bandstop	Bandstop Bandpass Equiv. J3E		LNA off			LNA on		
kHz	kHz	channels	Noise loading	NPR	Per-channel	Noise loading	NPR	Per-channel
			P _{TOT} dBm	dB	loading	P _{TOT} dBm	dB	loading
1940	60-2048	480	-11	41	S9+35dB	-39	40	S9+7 dB
3886	60-4100	960	-16	37	S9+19dB	-28	39	S9+7 dB
5340	60-5600	1260	-4	42	S9+38dB	-25	43	S9+17 dB
7600	316-8160	1800	-8	41	S9+33dB	-24	42	S9+17 dB

Table 2: FCDP+ NPR with LNA off & on

3. **Sensitivity**: Test setup: HP/Agilent 8935 E6380A, connected to FCDP+ via a 30 dB fixed attenuator. LNA on. FCDP+ running under HDSDR v2.7 on Win7 Pro, 64-bit.

The input power required to display a spike 3 dB above the noise floor on the spectrum scope was recorded at various frequencies.

Test freq. MHz	Input power dBm				
260	-102				
410	-122				
1015	-148				
1701	-146				
1901	-145				
2000	-137				

 Table 2: FCDP+ Sensitivity (+3dBr spike)

It is interesting to note that the FCDP+ is relatively "hot" in the 1-2 GHz range, and falls off significantly in the VHF/UHF range.

Adam Farson VA7OJ/AB4OJ 4-5 November 2013

Copyright © 2013 A. Farson VA7OJ/AB4OJ. All rights reserved.